
VERSION 972 -- "features added or changed since Swyftcard version 820.
J Dna than Sand .and Dave Lavond
30 AUGUST 1985

New key locations

There are now only five commands. They are assigned to new keys:

Control key
A
D
G
N
L

Creeper cursor

Routine
Inset-t"
Send
Calculate
Print
Disk

If there is no selection, pressing (and letting go of) the left leap key will
move one character to the left; pressing (and letting go of) the right leap key
will move one character to the right. This is fondly called creeping. If
there is a selection, pressing the left leap key unhighlights the text and
leaves the cursor at the left end of the selection; pressing the right leap key
unhlghlights the text a~d leaves the cursor at the right end of the selection.
CreepIng is useful for adjusting the size of the selection. Creeping always
leaves the ~u(sor collapsed. Creep is as fast as possible.

Leaning

If you already have a selection and you start Leaping l~ft, the cursor will now
land on a pattern withln the selection first, as opposed to after exhaustlng
the locations of that pattern outside the Eelection.

Leap will not miss pattern characters even if you tYPE fast in a large text.
Care must be taken now to make sure that you hold the Leap key down until the
pattern is found or else the last" character or two will be inserted into the
text.

Leaping is very fast. Try it.

Word ~Jrap

A word at the right end of the screen will wrap to the next line if it is
followed by two spaces, when there is only room for one or none. A third
=pace, hOI"Jever, will l'lrap to the follol-'/ing line.;::-

I

Disk

The Disk command will always save the text to disk no matter what change or
lack of change has been made ro the text.

You can now visually tell that you have saved a text. The rate at which the
cursor blinks is doubled after a save. It slows back to the normal rate after
you add or delete characters.

The Get command is no ionger.

Drag forward has been added. To use Drag forward, the current text is saved
uSlng the Disk Command. The passage of text to be COpiEd to another disk is
selected, the destinatiDn disk then inserted in the drive, and the Disk command
~5ed. The appearance of the Swyftcard message indicates that the selection 15

being Dragged. The selected text will be inserted into the destination text
where the cursor had been when the disk was saved. This final text can then be
saved to the disk with another Disk command.

The Disk command is now faster because it removes the g~p prior to saving the
text and restores the gap when loading text. Only the text is placed on the
disk. This means that text made with previous versions cannot be accessed by
the Disk command. Instructions for updating old text will be available.

The ProDos conversion disk is now available.

If the text is empty and an Apple disk is in the drive, then the Disk command
nill toot it.

After using an Apple disk~ Swyftcard can be rebooted by placing a text disk in
the drive and pressing the control open-apple and reset keys.

Reassiqnable keys

All control keys (alphabetical, A, -, J, and \) can be assigned to execute code
at any address. Multiple keys can be assigned to a single routine. The code
must be in the high 64K bank when using the Disk based version, and in the low
b4K in the Rom based ver~ion.· A Magic number in key translation table, when
modified, reassigns all keys to their original routines. There are extensive
instructions later in this handout. The address of the bottom of the text area
can be adjusted up or down within the decimal range, 5632 to -19757, by using
BASIC to store this value in 8T%. The algorithm which moves the text will
neither destroy text nor set the bottom too low. See the instructions which
follow.

Insert

When text is nearly full and the user Inserts enough text to fill all available
space then the system inserts .the text, empties the cut buffer,:and beeps.
Further attempts to Insert will cause a beep because the cut buffer is empty.
Insert is now faster.

Send

A user can tell if the text he is sending over a modem is being received by a
Swyftcard by sending control-Z control-C: the receiving Swyftcard responds with
the message HSWYFT", preceeded and followed by carriage returns.

Control-G re~eived over the modem will ca~se the receiving user to near one
bell; no character is entered into the text.

A line feed or carriage return or both can be Sent by using the BASIC variable
LE'l.. Add the first character to 256 times the second character. A carriage
return (13) and the line feed (10), yields LEX=2573. The default is -1.

When a character is received and the text is full, the bell rings until the
delete key is pressed.

You can now Send at 153,600 baud! Unfortunately, text is received and display
at only 4,800 baud, because the receiving computer must update its screen. The
baud rates and the asscociated value of SE'l. are tabulated here:

baud

300
1200
2400
4800
9600

19,200
153,600

SEX value

Print

The page length can be changed with the BASIC variable PLI.. Swytfcard makes
sure that PLX is big enough fQ~ a top (AB/.) and bottom (BEl.) margin and at
least one line of text.

The maximum number of pages was 125; it is now 200.

Underlining is now available~ It is toggled on and off in the text by the
underline character. The underline character is not printed; a space is
substit~ted for it in the printout. Underlining is also turned off by a pair
of carriage returns or by a pagebreak (actual or implied), A string of
underlines is printed as a solid underline, except that the first and last
underline are, for consistency, printed as bl~nks.

The BASIC strings US$ and UE$ are passed to the printer to turn underlining on
and off, respectively. The user customizes them for their own printer. They
can be up to 5 characters each. The first element in UE$ is a group flag. If
each character is individually underlined, by backspacing, then the group flag
should be set to CHRt(O). If underlining is done automatically by the printer,
set the group flag to CHR$(l), as with the EPSON.

USt=CHR$(27)+CHRt(45)+CHR$(49)
UEf.=CHR$(1)+CHR$(27)+CHR$(4S)+CHR$(48)

USt=CHRt(95)+CHRt(S)
UE$=CHR$(O)

BASIC

default (for the EPSoN printer)

(for other printers)

The BASIC commands RUN and NEW now delete all user strings except printer
strings for initialization, underline on and underline off. If you have
configured for your printer, RUN and NEW will no longer return you to the
default printer configuration! You no longer have to use GOTo to avoid this.

A BASIC program which reads or writes Swyftcard variables or strings m~st be
executed with a GOTO statement. RUN clears all of the variables and strings.

A handy BASIC command to observe the contents of strings is the following, note
the ·,1,· in MID$. For example, substitute PR$ for string-name$ below to see
the string used for printer initialization:

FOR I = 1 TO LEN(string-nameS) : ? ASC(MID$(string-namef,I,l)' NEXT I

The default BASIC strings, for the EPSON FX-80 printer, are:

PR$=CHRS(O)+CHR$(O)+CHR$(5)+CHR$(27)+CHR$(77)+CHRS(27)+CHR$(108)+CHR$(B)
USt=CHRt(27)+CHRS(45)+CHRS(49)
UE$=CHR$(1~+CHR$(27)+CHR$(45)+CHRS(4S)

For other printers, the underline st~ngs that will always work are:

USt=CHR$(95)+CHRf.(S)
UEt=CHR$(O)

Reassigning the Key Commands

All cont~ol keys execute a SwyftCard command. They can be reassigned with
simple BASIC statements. The ,commands are executed through twq'tables, the
translation and execution tables, at decimal 5536 and 5568, respectively. As
only some of the control keys are assigned, both tables are only sparsely
populated:

Control Translation Execution Execution Name of F:outine
Char ASCII Table address Index Table Address F.:outine Address

Delete 0 5536 5570 DELETE 58263
A 1 5537 7 5582 PASTE 58622
D 4 5540 5 ee"7Q

~~; SEND 59859
G 5543 0 5584 \.I BASIC 63510
T -3. b ! I 9 5545 27 5622 TAB 58483
L 12 5548 4 5576 DISK 64854
N 14 5546 2 5572 PRINT 60745
Z 26 5562 12 5592 CONTROL 59817
Escape,['")7 ~C"-:r

~, ~~o,_, 28 5624 ENTER 58464

0 5568 NODP 54607
29 5626 magic # 12855

2 4 e
~ 6 7

The control key (column 1) is received, by the SwyftCard, as its ASCI!
value (column 2). This value is first converted to an inde>! (column 4) by
using the value as an offset into the translation table (column 3). Since each
element in the execution table is 2 bytes, the index is doubled to use as an
offset into the execution table to yield the table address (column 5)
containing the execution add~e5s of the routine (column 6 and 7). All values
in column 7 change with each v~r5ion. Control keys not included in the above
table have been assigned an index of 0 which executes NODP. Uninclu~ed Indices
also execute NODP.

So, when you press the control N key, the Swyftcard converts it to an
index of 2, which it got from location 5546. The index is used to locate, at
5572, the address of the PRINT command, which is executed.

Since these tables are located in RAM, their values can be modified sa as
to reassign keys to new CDmmands. For instance, control P can be assigned tD
also execute the PRINT command, in addition to control N. Alternatively,
control P can be reassigned to a custom program you write that, say, replaces
one word with another (actually not impossible •••), or that does a Sort.

At the end of the execution table there is a magic number, related to the
version number. If this number is changed, the table will be reinitialized,
either after a BASIC command, or after pressing control Reset.

5

So, if,You want to assign that control P key to the print command, you
place, using a'BASIC statement, the index of the print command, 2, into the
16th position .(control P) past the beginning of the translation table:

?5536+16 = 5552

Try changing if and using the control P key:

POKE5552,2

On the other hand, ~f you want to assign the control P key to a completely
new routine, you must find an unused index, say 10, and store that at ~552:

POKE5552,10

At this point, since the index 10 is assigned to a NOOP, the control P key
will once again be inert. To assign index 10 a routine, you must store the
address in the 10th 2 byte position past the beginning of the eX2cution table:

?2*10+5568 = 5588

Let's store the warm start routine (53760). Since the POKE command only
stores a byte at a time, we have to figure out the value of the high byte and
the low byte. The high byte i; highest integer lower than 53760 over 256:

753760/256 = 210

The low byte is the remainder:

?53760-(256*210) = 0

POKE5588,O
POYE~589,210

(low byte)
(high byte)

The Get command can be reassigned to the control R key. The Get routine
is at 63598; the high byte is 248, and the low byte is 110. The control key is
already assigned an index of 6. The execution table location for this index is
5580. The BASIC statement is thus:

POKE5580,110:PDKE5581,248

If you make a mistake, you can force the Swyftcard to reinitialize the key
command tables by storing a zero at location 5626:

PDKE5626,O

Remember not to reassign the key that performs BASIC without first
assigning another key to it ...

6

This BASIC program will print ,the current key assignments. Below it is
its output. Mayall of your reassignments be good ones.

10 ?:?IASC trans index exec routine":?
20 FOR I = 0 TO 31
30 A=5536+1
40 B=PEEK(A)
50 C=5568+(2*B}
60 D=PEEK(C)+(256fPEEK(C+l))
70 ?1;:?1I ";
80 ?A;:?"
90 ?B;:?"
100 ?C;:?"
110 ?D
120 NEXT
130 END

Ase trans

0 5536
1 5537
2 5538
. ..;.. 5539
4 5540
5 5541
6 5542
7 5543
8 5544
9 5545
10 5546
11 5547
12 5548
13 5549
14 5550
~5 5551
16 5552
17· ~ ,,' 5553
18 5554
19 5555
20 5556
21 5557
22 5558
.,~,) 5559
24 5560
"'I~
":',J 5561
26 5562
27 5563
28 5564
29 5565
30 5566
31 5567

II,

~

". ,
II,

l

index

1
7
0
0
5
0
0
8
0
27

0
0
4
29
2
0
0
0
0
I)

I)

I)

0
0
0
0
12
28
0
9
"T
'.1

11

e~< ec routine

5570 58263
5582 58622
5568 54607
5568 54607
5578 59859
5568 54607
5568 54607
5584 63510
5568 54607

5622 58483
5568 54607
5568 54607
5576 64854
5626 12855

5572 60745
5568 54607
5568 54607'
5568 54607 ,
5568 54607
5568 54607
5568 54607
5568 54607
5568 54607
5568 54607
5568 54607
5568 54607

5592 59817
5624 58464

5568 54607
5586 55976
5574 54607
5590 54607

END

