
, February 15,1997

THE SWYFT AND THE CAT

JefRaskin
8 Gypsy Hill

Pacifica CA 94044
415-359-8588415-359-9767 Fax

KE6IGI-jefraskin@aol.com-AMA L-88

note: all company, feature, and product names are trademarks or registered trademarks.

A number of interface directions that are only now coming into prominence were foreshadowed
by a series of products from Information Appliance Inc. (IAI) None of the products achieved
wide recognition at the time, but interest in their revolutionary interfaces has steadily grown.
This article was written in response to many requests for information about this work. The best
known of the products was the Cat, a desJ..'1op machine designed for the Japanese
firm, Canon·Inc. Infonnation Appliance's SwyftWare forthe Apple II series and the Swyft
portable computer were the other major designs that came from IAl. The chief architect of these
products was the company founder.. He also originated the Macintosh project at Apple computer.
The aim of this essay is not so much to present a retrospective as to inspire.

[Photo of the Cat]

In many ways subsequent work, such as Gelertner's LifeStream chronological and linear file
model is notvery different from the methods incorporated in the effective and simple SwyftCard
product for the Apple II, introduced in 1983. The flavor of document-centered paradigms are
currently hinted .at in software such as Apple's OpenDoc and Microsoft's OLE,but a much fuller
expression of docucentric computing permeated all ofInformationAppliance's products .

. According to information from Canon, Inc., about 20,000 Cats were sold. While the Cat was in
fact a bit-mapped computer with a Motorola 68000 microprocessor, with the same screen size
and inherent power as contemporary Macintosh computers from Apple, Canon chose to sell the
Cat though their electronic typewriter division, and limited the use of graphics to those that could
be reproduced by the daisy-wheel printer that they sold with the it--namely none. Nor did they
realize the importance of third-party software though Infonnation Appliance had begun to get
third-party development started (especially in the file-conversion area). Though most customers
never knew of or benefitted from the Cats full capabilities, the reaction of users and reviewers
alike to the product's ease ofleaming and use was overwhelmingly positive. [look up and quote
some reviews].

THESWYFT

The Swyft was a small portable computer with built-in software for many common computer- .

based tasks, such as word pr<;)cessing, graphics, data-base operations, spreadsheet, and
telecommunications. The user could easily create macros to automate often-repeated tasks. To
encourage software development, it was its own programming environment, though the key to
enable programming was not widely disseminated as most users have neither the desire nor the
competence to do software development. Standard telephone-style jacks were provided for
telephone communications, there were both serial and parallel ports, the serial port being Mac-
compatible, the parallel IBM-compatible.

[Photo of the Swyft]

The specifications for the Model III Sywft are: weight 4.0 Ibs (1.8 kg), 11.8" X 10.6" X 1.3" (300
mm X 270 mm X 32 mm), 8 AA Nicad batteries were good for 6 hours of use (longer with
Alkaline batteries), 640 X 200 supertwist Liquid Crystal Display, 13 function keys, a 2400 baud

. ! moc)em, and 512K of memory. The software handled file transfers to and from both Macs and
IBM compatible computers. The floppy drive was external and the retail price of the Swyft
Model III was to be $999. The Model I with less memory and no modem was $799.2400 baud
was fast at the time, and the memory size was very large for a portable.

One of the fundamental principles of common-sense interface design is that simple things should
be simple. A single button turned Swyft on, there was no delay. If you wanted to write
something, you just started typing. You needed no commands, you just start typing. All text was
inserted, you could not wipe out text by typing over it. .

The principle that a user's work is sacred, and should not be changed without a user command or
as a side effect of the action of some other command, is an important one. Its violation can be
costly. Cut-and-paste paradigms are problematical in this regard and deserve some comment,
especially as we did not learn the lesson well enough when designing an analogous feature in the
Cat.

CUT-AND-PASTE AND OTHER DESIGN ERRORS

In almost all oftoday's word processors you can replace text by highlighting it and then typing.
The highlighted text disappears and your typing replaces it. This design feature was intended to
save the step of having to explicitly delete the highlighted text, that is instead of select-delete-
type you need only select-type. Deletion is a byproduct of typing when there is a selection. When
I gave a talk at the Bay Area Chapter of the Association for Computing Machinery's Special
Interest Group in Computer-Human Interaction (Palo Alto Ca 11 Feb. 1997) I asked how many
people'had never lost any text due to this design. Out of the some 300 people there, only one
person raised her hand.

What makes this design flaw especially grotesque is that the selection may not even be visible on
the display, and it may be of any size. You can be looking at a display, not noticing that you have
forgotten to or failed to move the cursor (which is not always particularly conspicuous) to the
current screen and start typing. The display suddenly shifts and you can see that you are typing
on some other screenful, but you do not see that you have just deleted an arbitrary amount of .

text.

When designing the Cat, we made a similar design error. Originally, to move text, we had the
user select the text to be moved, place the cursor where it was to be moved to, and then tap a
special key to invoke the MOVE command. This way there was never that uncomfortable
interim period found in CUT -and-PASTE-based moves where you have just deleted the text but
have yet to place.it anywhere, and a subsequent CUT costs you the text you cut while intending
the first move. This is another design flaw that occasionally causes lost text for most users.

Noted author and designer Scott Kim, then working for Information Appliance, pointed out that
we could eliminate the MOVE command by having the rule that if the cursor was moved (via the
LEAP command, which will be discussed later); any highlighted text would automatically be
moved .. The sequence of actions became select-and-then-just-move-the-cursor. The text followed
the cursor and stayed selected so that you could move it again ifthe move had been to the wrong . ' .

place. The UNDO provided additional safety. Moving text this way was a safe shortcut as in the
worst case, we argued, since while you might accidentally end up with some text where you
didn't want it, at least you'd never lose anything. You could always move it back. This seemed
wise counsel, and we adopted this design for the Cat.

i In practice it was not too bad, most of the time. But making moving text a side-effect of cursor
motion turned out to not be entirely successful, precisely because it was a side-effect that you
might not be paying attention to when your attention was on the act of moving the cursor. I can
remember vividly a few particularly annoying cases that happened to me. In one case I had
selected nearly half of a fifty-page essay, for some reason. All of a sudden I remembered a phrase
that I had wanted to' further explain. I moved the cursor to that phrase and typed away at my idea
with full speed. Of course, a huge chunk of my essay got pulled into the wrong place and my
subsequent typing and editing, made without observing that I had moved a mass oftext,
eliminated all possibility of using the single-level UNDO.

I continued writing and editing, and only much later noticed that something was wrong. It is
amazing how hard and frustrating it was to figure out what had happened! I felt that the text had .
been scrambled. And once I had figured out the problem, it took a lot of searching and reading to
further discover just what had been moved and where, exactly, it had been moved from. Another
occasion was when a few digits got accidentally moved in some data. It was impossible to figure
out what had been moved as there was no redundancy.

Other users reported the same occasional difficulty, but due to a psychological phenomenon that
Don Norman has so of tell' pointed out [reference] they blamed themselves for misuse of the
product rather than the design flaw that I had approved.

TWO CURES FOR CUT-AND-PASTE PROBLEMS

In the Swyft we returned to the Cut-and-Paste model, but added a new feature where all cuts
were stored sequentially in a system-created document (a separate "permanent delete" command
allowed the permanent erasure of text from that document). This prevented accidental loss of text

(due to the causes discussed in this section) and the collection of <:ut material often proved a
valuable resource. The first item in the document is what would be pasted when the PASTE
command was executed. Deleting something from the Cut Document merely moved it to the
beginning.

It would be a useful study to compare cut-and-paste-with-store as we did for the Swyft with the
original MOVE command, with the alternative of having each document have its own associated
cut document, and possibly some other alternatives, to see which causes the fewest disasters. It
would not be an easy study, as the frequency with which the problem occurs is low. But low-
frequency high-impact design errors are just the kind ofthing that makes people edgy about and
dislike a product. As various experiments have shown [cite some], an occasional, seemingly
random punishment for what is normally a permissible or even desirable act can cause neurotic
behavior in animals.

We should design so that this kind of punishment is never dealt us by software.

Neither the Cat nor the Swyft, fortunately, allowed deletion of text to be a byproduct oftyping as
do almost all current word processors, one of the reasons they were singularly unfrustrating.

. I

