
CH1'89 PROCEEDINGS MAY 1989

SYSTEMIC IMPLICATIONS OF
LEAP AND AN IMPROVED TWO-PART CURSOR:

A CASE STUDY

Je f Raskin

I n f o r m a t i o n Appl iance , Inco rpora t ed

3530 W e s t B a y s h o r e R o a d

Pa lo Alto , C A 94303

ABSTRACT

The lowly text cursor is a non-issue for most interface
designers. Nonetheless, current text cursor designs suffer
from at least two problems: one-off errors and a lack of
visibility of function. These problems are exacerbated in an
editing environment which uses the exlxemely fast Leap
cursor-moving technology.

This paper presents solutions to these cursor design problems
and reveals the surprising way many other aspects of system
design can be improved as a consequence of designing the
cursor correctly.

KEYWORDS

Cursor, dual cursor, mouse, Leap, text editor, word processor,
user interface, blind.

INTRODUCTION

Cursors on computer screens, like doors on buildings [1], are
so commonplace that we tend to take them for granted.
However, most present cursor designs inaccurately convey
their intended function. The improved cursor design pre-
sented here makes learning to use a screen-based system
easier, decreases the difficulty of using a system even for
experienced users, and has led to unexpected and beneficial
changes throughout the design of a number of products.

The function of a cursor is to indicate the locus of action of
an event. In text, it usually is used to indicate where the next
character to be typed will appear, where a block insertion or
other action will take effect, and where a deletion will occur
if an appropriate key is tapped.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distrib-
uted for direct commercial advantage, the ACM copyright
notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the As-
sociation for Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific permission.

© 1989 A C M 0-89791-301-9/89/0004-0167 1.50

The most elementary use of a cursor is in simple typing.
Surprisingly, it is here that conventional cursor design first
fails.

THE CURSOR IN TYPING

A cursor in text takes the form of a (usually blinking) under-
line beneath a character, a box around the character, o r - - in
some bit-mapped graphic-based systems [2] - - a vertical
line (which may be decorated in various ways) between two
characters.

The elementary functions in typing with a display-based
system include (i) tapping [3] a key in order to insert (or
overwrite) the key's associated character at the location of
the cursor, and (ii) a backspace function, which deletes the
most recently typed character. The frequency with which
humans err makes backspace an important function, but it
also means that there are two loci of action in the text: the
location on the display where the next character will appear
if a character key is tapped; and the character on the display
which will be deleted if the backspace key is tapped. These
are generally not at the same position on the display.

Nonetheless, conventional cursors indicate only one of these
two positions. This, naturally, causes confusion in beginners
and errors in more experienced users. For example, consider
the string

ab~de

positioned somewhere on the display. The user wishes to
insert the character "x" at the position currently occupied by
the letter "c" in the example. With most present systems (in
insert mode), the cursor is moved to the " c " - - as shown by
the underline in the example, and the "x" typed, yielding

abxcde

If, however, the user wishes to delete the "c," then the cursor
must be moved to the "d"

abcde

and the backspace key tapped. This requirement for aiming
"one-off" from a given target for deletion is inherently con-

167

CHr89 PROCEEDINGS MAY 1989

fusing. Ideally, the user should aim exactly at the target of an
intended operation. To alleviate this problem, some systems
provide a "forward delete" function that erases the character
at the cursor, thus solving the "one-off" problem. But now
there are two ways to delete characters, and the user must
choose between them, introducing a new possible error:
using the incorrect delete function. Observation of users of
such systems reveals that this error is not uncommon. While
forward delete may be valuable for other reasons, it is not a
solution for the problem being discussed here.

A more recent class of systems uses a between-character
cursor. This cursor is based on work done in the 70's at
Xerox® PARC and since embedded in popular systems such
as the Apple® Macintosh TM [4]. Part of the intent of this
cursor is to indicate that a new character will be inserted con-
ceptually [9] between two existing characters. However, the
one-off problem still exists. The user must remember to
place the cursor to the left of the "c" in order for, say, an x to
be inserted at the location of the"c" and the "c" moved to the
fight.

ablcde

type "x"

abxlcde

but to place the cursor to the fight of the "c"

abclde

if one is to use backspace to remove it, resulting in

abide

While I have characterized this problem of cursor design as
one where the user inadvertently aims at the wrong point, it
is also partly a problem of visibility [1], since there is a
function of the cursor that is not visible.

SEEING THE PROBLEM

The very familiarity of cursors made it especially difficult to
detect the one-off problem. I was surprised, in the early
stages of testing other aspects of one of our interface designs
that subjects were making the one-off errors described above.
It would have been an easy matter to push the observations
aside and concentrate on "bigger" issues; many other design-
ers have accepted cursors as they are. However, we were
quite determined to not only bulldoze human interface moun-
tains if we could, but to keep our users from tripping over the
pebbles as well. Thus it was that in the early design stages of
a commercial information appliance [5] the staff of Informa-
tion Appliance Inc. TM attempted to find solutions to the one-
off problem.

Before solving the one-off problem, we had already de-
signed a two-part pointer which solved the visibility part of
the problem. This pointer consisted of a blinking cursor
(here indicated by an underline) and a reverse-video high-

light (here indicated by bold type). In this example, the
cursor has been moved to the letter "c".

ab~de

The user is told that the blinking cursor indicates where the
next character to be typed will appear, and the highlight
shows what will disappear when the backspace key is tapped.
This, however, did not solve the one-off problem since to
delete, say, the "b", one still had to move the cursor to the
"c." If one defined pointer motion in terms of the highlight,
then erasure worked correctly, but insertion had a one-off
error associated with it.

The problem was brought into sharp focus by our extremely
fast Leap® [6] mechanism for moving the cursor to a particu-
lar instance of a target character. The mechanism, described
below, is text-based, modeless, and faster than using a mouse
or other pointing device. Its very speed made any one-off
errors especially noticeable and annoying.

DUAL CURSOR BEHAVIOR UNDER CURSOR MOTION

Considerable debate arose as to whether it was better to have
the cursor or the highlight land on the target, and this debate
stifled progress for some six months (the debate also in-
cluded various ways of implementing Leap, but that is an-
other story). Eventually three of us [7], in what seemed to be
yet another futile attempt to decide which of the two ways
was better, simultaneously realized the solution.

In retrospect the solution seems simple, even though it was
in fact far from obvious at the time: indeed, a number of
people both inside and outside the company had worked on
the specific problem and failed to solve it. Emotions ran
high: one employee resigned partly due to his belief that we
were wasting time on a "religious" dispute that had no real
solution [8]. The solution was this: when the cursor is
moved, we coalesce the blinking cursor and the highlight on
the same target character (indicated here by an underlined
bold-face character). A Leap (or other cursor move) to the
character "c" in our example yields:

ab~de

Now, if a character is typed, it displaces the target; if back-
space is employed, the target is erased. With this scheme,
the user always aims for the locus of the desired action and
there is no one-off problem. It is clear that a similar pair of
indicators could be used on a wide variety of systems. If an
"x" is typed, as before, we would have

abxGde

which indicates that the next letter to be typed will push the
"c" still further over, and tapping backspace will delete the
just-typed "x". However, if backspace were tapped, we
would have

able

1 6 8

CH1'89 PROCEEDINGS MAY 1989

This solution turned out to be eminently satisfactory not only
for beginners but even for users experienced with conven-
tional cursors who unconsciously adapt to the new design
immediately and use it without error or comment. [10]

INTERACTION WITH LEAP

The need for a better cursor design was more forcibly brought
to our attention by our extremely rapid cursor moving abil-
ity. Leap is implemented with two keys, pedals or other
buttons. The keys are typically accessible to the thumbs
below the space bar or to the right and left of a shortened
space bar. The right Leap key is used to move the cursor
forward in text; the Leap key on the left is used to move the
cursor backward in text. Forward and backward are defined
with respect to the order in which text is usually read.

To avoid the usual pattern entry mode, a Leap key is held
down while the pattern is typed. The cursor is immediately
placed at the first character of the first occurrence of the
pattern in the indicated direction. At first blush this looks
like a simple modeless find, but it has a very different feel
than other implementations with which we are familiar: the
search takes place during the typing of the pattern, and is so
fast (maximum search time is under 300 msec) that there is
no apparent delay between completing the pattern and the
cursor appearing at the target. Without this speed it would be
hard to call Leap a cursor moving technique. Another very
important point is that no delimiter is required. When users
see that the cursor has appeared at the target, they merely
resume typing or go on to perform whatever operation is
desired. The hidden delimiter which consists of releasing
the Leap key is so transparent and natural that even beginners
rarely realize that they perform this operation.

SIMPLIFYING THE MENTAL MODEL AND WORKING
WITH THE BLIND

Another advantage of not requiring an explicit delimiter is
that any character may be part of a search string. In both
IBM® and Apple personal computer systems, return is used
as a search string delimiter which means that one cannot, for
example, search for a period at the end of a paragraph (i.e.
search for Period-Return-Return). In systems we design,
page and document boundaries and the like all become
typable, erasable, and Leapable-to characters, making for a
great deal of uniformity and eliminating many special cases
required by other systems.

For example, forcing a new page is thus reduced to putting in
a Page character (no page commands are used). Starting a
new document consists of typing the Document character.
Any of these characters can be the target of a Leap, thus to
move to the next page one simply Leaps to the Page charac-
ter, to search the beginnings of a number of documents one
Leaps to the Document character (and then can tap a Leap
Again key, which Leaps to the next instance of the same
pattern.) Implicit Page characters are also inserted automati-
cally when there are enough characters to warrant a new
page, these Page characters migrate as needed as text is
edited. Explicit, user-supplied Page characters stay where
they are typed.

The user then has a mental model where Returns, page
breaks, and document boundaries are characters, each with a
characteristic graphic appearance, but which behave exactly
as do the letters of the alphabet. This mental model is far
simpler than that required by systems where pages, documents
and the like are unique constructs each with their own rules.

Leap has some interesting benefits besides its modelessness
and ease of use: it is faster than any other cursor moving
technique with which we are familiar, with expert user times
averaging under two seconds [11]. Since it is context-
dependent and not position-dependent, we have found that
(in conjunction with an inexpensive speech synthesizer) it
can be used by blind operators.

FURTHER SYSTEMIC IMPLICATIONS

To highlight (or selec0 text in a Leap-based system one
positions the cursor on one end of the text to be selected,
Leaps to the other end of the selection in either direction and
taps the Highlight key. Since, in this paradigm, there is
always a highlight, we say that when the highlight encom-
passes more than one character it is "extended". Note that,
unlike many popular systems where the cursor position and
the current text insertion point can occur at widely separated
points (even to the extent that typing on the keyboard can
affect text not visible on the screen), with this system the
highlight is always adjacent to the cursor. Since the cursor is
always on the screen, the position of at least one end of the
highlight is always visible. Systems where the selection can
disappear can appear mysterious to the user.

The proximity of cursor and highlight, along with the speed
of Leap and the desire to avoid other confusing aspects of
more typical user interfaces inspired one employee (Dr.
Scott Kim) to suggest that we abandon the usual cut-and-
paste method of moving text. In his improvement, Leaping
while there was an extended highlight caused the selection to
be inserted at the cursor's destination. A separate Copy key
is used to make a copy of a selection.

Pointers are left at the end of the move operation so that if the
Highlight key is tapped the moved selection is automatically
rehiglighted. [12]

MOVING A BLOCK OF TEXT: COMPARISON WITH A
CONVENTIONAL MOUSE-BASED SYSTEM

Apple Macintosh
1. Select text to be moved
2. Use Cut operator
3. Move cursor to destination
4. Use Paste operator

Canon Cat
1. Select text to be moved
2. Move cursor to destination

CONCLUSION

The interface ideas described here tend to be quite different
from the majority of work being done in the human interface
field. This work touches some low-level areas where it is
taken for granted that we have long known the "right way" to
do things. In fact, some of the elementary operations and
conventions common to today's "advanced" systems are less

1 6 9

CH1'89 PROCEEDINGS MAY 1989

than optimal. For example, the two-part cursor described
here is easier to learn and use than traditional cursors and
causes fewer pointing errors. The success of the cursor
design and the related Leap cursor-moving technology led to
further beneficial changes in the design of some commercial
multi-purpose systems. All of these systems have excep-
tional usability and good feel. Research is called for to
further quantify and understand these effects.

NOTESANDREFERENCES

1. Norman, Donald A. The Psychology of Everyday Things.
Basic Books, 1988.

. Xerox PARC's Alto systems and their derivatives, e.g.
most graphic work stations and Apple 's Macintosh se-
ries.

. At Information Appliance Inc. we use the term "tap" to
mean the consecutive actions of depressing and releasing
a key or button with no intervening actions. The term
"press," often used in this connection, connotes only
pushing a key or button downward. For example, we
would describe the act of typing a capital letter B on most
systems as follows: "Press and hold down the Shift key
and, while holding it down, tap the key marked 'B ' ; then
release the Shift key."

. The author, who created the Macintosh project at Apple
Computer, and who had been a frequent visitor to Xerox
PARC (Palo Alto Research Center) in the early '70 's ,
introduced the Xerox paradigm to Apple. It should be
noted that those elements of the work done at Xerox
PARC which Apple used were not "pirated," but were
used with permission as the result of negotiations be-
tween Apple and Xerox.

. The best-known product to utilize the concepts presented
here is the Canon Cau M "work processor." Its scope of
application includes word processing, data base, spread-
sheet, telecommunications, programming, and calcula-
tion. Based on a Motorola 68000 CPU, the product had a
list price of $795 at the time this was written.

. Leap is a registered trade mark of Information Appliance
Inc. Leap technology and the cursor design described
here are covered by patents and/or patents pending. The
screen appearance and the look and feel of the interface
are protected by copyright. Licenses to use this work are
available from Information Appliance Inc.

. It was truly simultaneous: one second we were discuss-
ing the situation and then something in an apparendy ir-
relevant comment one of us made must have triggered an
identical thought in each of us. We all laughed and knew
the problem was solved without saying a further word.
The participants were Dr. James Winter, Dr. Renwick
Curry, and the author.

8. It is hard to decide when to stop working on what seems
like an intractable problem. The meeting alluded to

.

10.

above was called by the author since he had an intuition
- - nothing m o r e - - that a solution was still possible and
would come soon even though a concerted effort for
months had failed. This is, of course, the kind of unsci-
entific thing that goes on all the time even in the most
technical of environments.

In fact, the new character is not inserted between two
characters, but when the cursor lies between two charac-
ters the new character is inserted on top of the character
to the right of the cursor, and the character that was to the
right of the cursor moves out of the way to its right. This
form of cursor fits a mental model of text as a sequence
better than it represents what actually happens on the
display. On the Macintosh, if you try to put the cursor on
a particular character it slips off to the right or left,
depending on whether you are to the right or left of the
center of the character.

Being a small company, we do not have the resources to
to a good quantitative study on the decreased error rate
due to the new cursor design. However, so much of our
work has proved so effective in practice and user satis-
faction that it begs for proper academic research to either
confirm or deny our conclusions, to explain and possibly
extend our successes, and to quantify the results. We are
always happy to cooperate with researchers in this regard.

11. One subject, a professional writer with good typing skills,
after over three months experience with Leap, achieved
an average cursor moving time of 1.34 seconds including
Leaps to targets that were not on-screen. The times were
measured in the process of ordinary editing. We observe
that this is considerably less than the 2.02 seconds aver-
age time for the use of a mouse by an experienced user
for on-screen moves cited in Card, Moran, and Newell,
The Psychology of Human-Computer Interaction,
Lawrence Erlbaum Associates, 1983, pg. 237. Since our
time measurement was from initial press of a Leap key to
the resumption of typing rather than to the moment the
cursor lands on target, we have added (in accordance
with the techniques given in the cited work) an extra
homing time to the mouse time to make the results more
directly comparable. The advantage of Leap over a mouse
in moving to off-screen targets (where the mouse-based
system must resort to scroll-bars or other special tech-
niques) is considerably greater.

12. In the Canon Cat, the text was left highlighted after the
move, on the grounds that the user might want to move it
again. In practice this design error resulted in many un-
wanted secondary moves.

Apple is a registered trademark of Apple Computer. Inc.
Macintosh is a trademark of Apple Computer, Inc.
Canon Cat is a registered trademark of Canon, Inc.
IBM is a registered trademark of International Business Machines Corp.
Information Appliance is a trademark of Information Appliance, Inc.
Leap is a registered trademark of Information Appliance, Inc.
Xerox is a registered trademark of the Xerox Corporation.

170

